	DAYBREAK	G-109 BE	ACH BACK ¹	ВЕ	3-S Con	np	
Analyte	RESULT	DL	RL	RESULT	DL	RL	
Dioxins/Furans (pg/g)							
1,2,3,4,6,7,8-Hepta CDD	0.300	0.0950	1.00				
1,2,3,4,6,7,8-Hepta CDF	ND	0.0760	1.00				
1,2,3,4,7,8,9-Hepta CDF	ND	0.0757	1.00				
1,2,3,4,7,8-Hexa CDD	ND	0.108	1.00				
1,2,3,4,7,8-Hexa CDF	ND	0.0891	1.00				
1,2,3,6,7,8-Hexa CDD	ND	0.113	1.00				
1,2,3,6,7,8-Hexa CDF	ND	0.0929	1.00				
1,2,3,7,8,9-Hexa CDD	ND	0.113	1.00				
1,2,3,7,8,9-Hexa CDF	ND	0.0898	1.00				
1,2,3,7,8-Penta CDD	ND	0.0948	1.00				
1,2,3,7,8-Penta CDF	ND	0.0948	1.00				
2,3,4,6,7,8-Hexa CDF	ND	0.0842	1.00				
2,3,4,7,8-Penta CDF	ND	0.0923	1.00				
2,3,7,8-Tetra CDD	ND	0.109	0.200				
2,3,7,8-Tetra CDF	ND	0.101	0.200				
Octa CDD	1.45	0.199	2.00				
Octa CDF	ND	0.200	2.00				
Total Hepta CDD	0.564	0.0950	1.00				
Total Hepta CDF	0.0901	0.0758	1.00				
Total Hexa CDD	0.128	0.112	1.00				
Total Hexa CDF	ND	0.0889	1.00				
Total Penta CDD	ND	0.0948	1.00				
Total Penta CDF	ND	0.0936	1.00				
Total Tetra CDD	ND	0.109	0.200				
Total Tetra CDF	ND	0.101	0.200				
Polychlorinated Biphenyls (ug/kg)							
Aroclor 1016	ND		10.2				
Aroclor 1221	ND		10.2				
Aroclor 1232	ND		10.2				
Aroclor 1242	ND		10.2				
Aroclor 1248	ND		10.2				
Aroclor 1254	ND		10.2				
Aroclor 1260	ND		10.2				
Organochlorine Pesticides (ug/kg)							
Aldrin	ND		4.42				
alpha-BHC	ND		4.42				
beta-BHC	ND		4.42				
delta-BHC	ND		4.42				
gamma-BHC (Lindane)	ND		4.42				
cis-Chlordane	ND		4.42				
trans-Chlordane	ND		4.42				
4,4'-DDD	ND		4.42				
4,4'-DDE	ND		4.42				
4,4'-DDT	ND		4.42				

Endosulfan ND		ND	 4.42	 	
Endosulfan sulfate Endrin Endrin ND				 	
Endosulfan sulfate ND 4.42 Endrin ND 4.42 Endrin Aldehyde ND 4.42 Endrin Aldehyde ND 4.42 Endrin Aldehyde ND 4.42 Heptachlor ND 4.42 Heptachlor epoxide ND 4.42 Methoxychlor ND 13.3 Chlordane (Technical) ND 133 Toxaphene (Total) ND 133 Acenaphthalene (Total) ND 2.74 Acenaphthylene (ND ND 2.74 Acenaphthylene ND 2.74				 	
Endrin ND				 	
Endrin Aldehyde ND	Tall Sallace				
Endrin ketone	Aldehyde				
Heptachlor	·				
Heptachlor epoxide					
Methoxychlor ND 13.3 Chlordane (Technical) ND 133 Toxaphene (Total) ND 133 Semivolatile Organic Compounds (ug/kg) Acenaphthene ND 2.74 Acenaphthylene ND 2.74 Anthracene ND 2.74 Anthracene ND 2.74 Benzo(a)pyrene ND 4.1 Benzo(bfluoranthene ND 4.1 Benzo(g,h,j)perylene ND 4.1 Chrysene ND 2.74 -					
Chlordane (Technical) ND 133 Semivolatile Organic Compounds (ug/kg) ND 133 Acenaphthene ND 2.74 Acenaphthylene ND 2.74 Anthracene ND 2.74 Benz(a)anthracene ND 2.74 Benzo(b)fluoranthene ND 4.1 Benzo(g,h)pyrene ND 4.1 Benzo(g,h)iperylene ND 4.1 Benzo(g,h)anthracene ND 2.74 Dibenz(a,h)anthracene ND 2.74 Fluoranthene ND 2.74 Fluoranthene ND 2.74					
Toxaphene (Total)					
Semivolatile Organic Compounds (ug/kg)	•			1	
Acenaphthene ND 2.74 Acenaphthylene ND 2.74 Anthracene ND 2.74 Benz(a)anthracene ND 2.74 Benzo(b)fluoranthene ND 4.1 Benzo(k)fluoranthene ND 2.74 Chrysene ND 2.74 Fluoranthene ND 2.74		ND	133		
Acenaphthylene ND 2.74 Anthracene ND 2.74 Benz(a)anthracene ND 2.74 Benzo(a)pyrene ND 4.1 Benzo(b)fluoranthene ND 4.1 Benzo(k)fluoranthene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 2.74 Chrysene ND 2.74 Dibenzo(a,h)anthracene ND 2.74 Chrysene ND 2.74 Fluoranthene ND <		ND	 2 74	 	
Anthracene ND 2.74 Benz(a)anthracene ND 2.74 Benzo(a)pyrene ND 4.1 Benzo(b)fluoranthene ND 4.1 Benzo(k)fluoranthene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 2.74 Chrysene ND 2.74 Dibenzo(a), piyrene ND 4.74 Benzo(k)fluoranthene ND 2.74 Fluoranthene ND 2.74 Indenz(a, h)anthracene ND 2.74				 	
Benz(a)anthracene ND 2.74 Benzo(a)pyrene ND 4.1 Benzo(b)fluoranthene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 2.74 Chrysene ND 2.74 Dibenz(a,h)anthracene ND 2.74 Fluoranthene ND 2.74 Indeno(1,2,3-cd)pyrene ND 2.74	·				
Benzo(a)pyrene ND 4.1 <					
Benzo(b)fluoranthene ND 4.1					
Benzo(k)fluoranthene ND 4.1					
Benzo(g,h,i)perylene ND 2.74				1	
Chrysene ND 2.74	•				
Dibenz(a,h)anthracene ND 2.74					
Fluoranthene ND					
Fluorene ND 2.74 Indeno(1,2,3-cd)pyrene ND 2.74 1-Methylnaphthalene ND 5.46 2-Methylnaphthalene ND 5.46 Naphthalene ND 5.46 Naphthalene ND 5.46 Phenanthrene ND 2.74 Pyrene ND 2.74 Carbazole ND 4.10 Dibenzofuran ND 2.74 4-Chloro-3-methylphenol ND 13.6 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 68.3					
Indeno(1,2,3-cd)pyrene					
1-Methylnaphthalene ND 5.46 2-Methylnaphthalene ND 5.46 Naphthalene ND 5.46 Phenanthrene ND 2.74 Pyrene ND 2.74 Carbazole ND 4.10 Dibenzofuran ND 2.74 4-Chloro-3-methylphenol ND 27.4 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3 2,4-Dinitrophenol ND 68.3					
2-Methylnaphthalene ND 5.46 Naphthalene ND 5.46 Phenanthrene ND 2.74 Pyrene ND 2.74 Carbazole ND 4.10 Dibenzofuran ND 2.74 4-Chloro-3-methylphenol ND 27.4 2-Chlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3					
Naphthalene ND 5.46 <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
Phenanthrene ND 2.74 <t< td=""><td></td><td></td><td></td><td> </td><td></td></t<>				 	
Pyrene ND 2.74 <					
Carbazole ND 4.10 -	tillelle			 	
Dibenzofuran ND 2.74 4-Chloro-3-methylphenol ND 27.4 2-Chlorophenol ND 13.6 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 68.3 2,4-Dinitrophenol ND 68.3	nle				
4-Chloro-3-methylphenol ND 27.4 2-Chlorophenol ND 13.6 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3				 	
2-Chlorophenol ND 13.6 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3				 	
2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3				 	
2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3	·			 	
2,4-Dinitrophenol ND 68.3	·			 	
	· · · · · · · · · · · · · · · · · · ·				
200	<i>,</i> ,				
1				 	
204671 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tetrachlorophenol			 	
22567. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•				 М

2,4,5-Trichlorophenol	ND	 13.6		T		
2,4,6-Trichlorophenol	ND	 13.6				
Bis(2-ethylhexyl)phthalate	ND	 41				
Butyl benzyl phthalate	ND	 27.4				
Diethylphthalate	ND	 27.4				
Dimethylphthalate	ND	 27.4				
Di-n-butylphthalate	ND	 27.4				
Di-n-octyl phthalate	ND	 27.4				
N-Nitrosodimethylamine	ND	 6.83				
N-Nitroso-di-n-propylamine	ND	 6.83				
N-Nitrosodiphenylamine	ND	 6.83				
Bis(2-Chloroethoxy) methane	ND	 6.83				
Bis(2-Chloroethyl) ether	ND	 6.83				
Bis(2-Chloroisopropyl) ether	ND	 6.83				
Hexachlorobenzene	ND	 2.74				
Hexachlorobutadiene	ND	 6.83				
Hexachlorocyclopentadiene	ND	 13.6				
Hexachloroethane	ND	 6.83				
2-Chloronaphthalene	ND	 2.74				
1,2-Dichlorobenzene	ND	 6.83				
1,3-Dichlorobenzene	ND	 6.83				
1,4-Dichlorobenzene	ND	 6.83				
1,2,4-Trichlorobenzene	ND	 6.83				
4-Bromophenyl phenyl ether	ND	 6.83				
4-Chlorophenyl phenyl ether	ND	 6.83				
Aniline	ND	 13.6				
4-Chloroaniline	ND	 6.83				
2-Nitroaniline	ND	 54.6				
3-Nitroaniline	ND	 54.6				
4-Nitroaniline	ND	 54.6				
Nitrobenzene	ND	 27.4				
2,4-Dinitrotoluene	ND	 27.4				
2,6-Dinitrotoluene	ND	 27.4				
Benzoic acid	ND	 341				
Benzyl alcohol	ND	 13.6				
Isophorone	ND	 6.83				
Azobenzene (1,2-DPH)	ND	 6.83				
Bis(2-Ethylhexyl) adipate	ND	 68.3				
3,3'-Dichlorobenzidine	ND	 27.4				
1,2-Dinitrobenzene	ND	 68.3				
1,3-Dinitrobenzene	ND	 68.3				
1,4-Dinitrobenzene	ND	 68.3				
Pyridine	ND	 13.6				
Total Metals (mg/kg)						
Arsenic	59.0*	 1.02	4.29		1.02	
Barium	74.4	 1.02				
Cadmium	ND	 0.205				

Chromium	9.69	 4.09		
Copper		 		
Lead	3.47	 0.205		
Manganese		 		
Mercury	ND	 0.0818		
Selenium	ND	 2.05		
Silver	ND	 0.205		
Zinc		 		

Notes:

DL = detection limit

RL = reporting limit

ND = not detected at or above the DL

 original sample result reported by laboratory was point composite samples were then collected from

¹ All beach backfill results are from the same source.

ВЕ	B-C Con	np	ВВ	S-N Con	np	BB-	Total Co	mp	Import Criteria
RESULT	DL	RL	RESULT	DL	RL	RESULT	DL	RL	·
						0.299	0.108	4.96	2.5
						0.11	0.0962	4.96	2.5
						ND	0.0968	4.96	2.5
						ND	0.102	4.96	2.5
						ND	0.0999	4.96	2.5
						ND	0.107	4.96	2.5
						ND	0.103	4.96	2.5
						ND	0.104	4.96	2.5
						ND	0.0993	4.96	2.5
						ND	0.101	4.96	2.5
						ND	0.105	4.96	2.5
						ND	0.0945	4.96	2.5
						ND	0.103	4.96	2.5
						ND	0.103	0.993	0.5
						ND	0.107	0.993	0.5
						1.81	0.107	9.93	5
						0.166	0.108	9.93	5
						0.523	0.108	4.96	
						0.11	0.0965	4.96	
						ND	0.162	4.96	
						ND	0.0992	4.96	
						ND	0.101	4.96	
						ND	0.104	4.96	
						ND	0.144	0.993	
						ND	0.107	0.993	
						ND		9.19	10
						ND		9.19	10
	-					ND		9.19	10
	1					ND		9.19	10
						ND		9.19	10
						ND		9.19	10
						ND		9.19	10
						ND		1.8	5
						ND		1.8	5
						ND		1.8	5
	-					ND		1.8	5
	-					ND		1.8	5
						ND		1.8	100
	-					ND		1.8	100
						ND		1.8	5
						ND		1.8	5
						ND		1.8	5

ND 1.8 5 ND 5.41 5 ND 54.1 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 3.97 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 -	
ND 1.8 5	
ND	
ND ND ND ND ND ND ND ND	
ND ND ND ND ND ND ND ND	
ND 1.8 5 ND 5.41 5 ND 54.1 250 ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 2.65 330 ND 3.97 ND 2.65 330	
ND 1.8 5 ND 1.8 5 ND 5.41 5 ND 54.1 ND 54.1 250 ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 2.65 330	
ND 1.8 5 ND 5.41 5 ND 54.1 ND 54.1 ND 54.1 250 ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 2.65 330	
ND 1.8 5 ND 5.41 5 ND 54.1 ND 54.1 ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 2.65 330	
ND 5.41 5	
ND 54.1	
ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 2.65 330	
ND 2.65 330 ND 3.97 330 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 2.65 330	
ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 2.65 330	
ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 2.65 330	
ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 2.65 330	
ND 2.65 330 ND 3.97 330 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 2.65 330	
ND 3.97 330 ND 3.97 ND 3.97 ND 3.97 ND 2.65 330	
ND 3.97 ND 3.97 ND 3.97 ND 2.65 330	
ND 3.97 ND 2.65 330	
ND 2.65 330	
ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330	
ND 2.65 330 ND 2.65 330	
ND 2.65 330	
I I I I I I I I I I I I I I I I I I I	
ND 2.65 330	
ND 2.65 330	
ND 5.29 10000	
ND 5.29	
ND 5.29 330	
ND 2.65 330	
ND 2.65 330	
ND 3.97	
ND 2.65 330	
ND 26.5	
ND 13.2	
ND 13.2	
ND 13.2 330	
66.2	
66.2	
ND 6.62 330	
ND 6.62 330	
ND 26.5	
ND 26.5 2000	
ND 26.5	
ND 5.29 330	
ND 13.2	
13.2	

	 		 	ND	 0.22	0.63
4.43	 1.04	4.46	 1.10	3.91	 1.10	8.8
	 		 	ND	 13.2	
	 		 	ND	 66.2	
	 		 	ND	 66.2	
	 		 	ND	 66.2	
	 		 	ND ND	 66.2 26.5	
	 		 	ND	 6.62	
	 		 	ND	 6.62	
	 		 	ND	 13.2	330
	 		 	ND	 330	2000
	 		 	ND	 26.5	2000
	 		 	ND	 26.5	
	 		 	ND	 26.5	
	 		 	ND	 52.9	
	 		 	ND	 52.9	
	 		 	ND	 52.9	
	 		 	ND	 6.62	
	 		 	ND	 13.2	
	 		 	ND	 6.62	
	 		 	ND	 6.62	
	 		 	ND	 6.62	330
	 		 	ND	 6.62	330
	 		 	ND	 6.62	330
	 		 	ND	 6.62	330
	 		 	ND	 2.65	
	 		 	ND	 6.62	330
	 		 	ND	 13.2	333
	 		 	ND	 6.62	330
	 		 	ND	 2.65	330
	 		 	ND	 6.62	
	 		 	ND	 6.62	
	 		 	ND ND	 6.62	330
	 		 	ND	 6.62 6.62	220
	 		 	ND	 6.62	
	 		 	ND	 26.5	330
	 		 	ND	 26.5	330
	 		 	ND	 26.5	330
	 		 	ND	 26.5	330
	 		 	ND	 26.5	330
	 		 	ND	 39.7	330
	 		 	ND	 13.2	
	 		 	ND	 13.2	

 		 		8.59	 1.1	76
 		 		25.2	 2.20	34
 		 		3.36	 0.22	79
 		 		323	 1.10	1800
 		 		ND	 0.0881	0.23
 		 		28.9	 4.40	180

5 59 mg/kg. The result from reanalysis of a second aliquot from the same sample was 4.45 mg/kg. Three 5-the material, and the resulting arsenic concentrations were 4.29, 4.43, and 4.46 mg/kg. Laboratory reports

			1			2
	LIVINGSTON G-1				L CREEK	
Analyte	RESULT	DL	RL	RESULT	DL	RL
Dioxins/Furans (pg/g)						
1,2,3,4,6,7,8-Hepta CDD	0.192	0.101	1.00	0.852	0.101	5.00
1,2,3,4,6,7,8-Hepta CDF	ND	0.104	1.00	0.445	0.102	5.00
1,2,3,4,7,8,9-Hepta CDF	ND	0.103	1.00	ND	0.102	5.00
1,2,3,4,7,8-Hexa CDD	ND	0.102	1.00	ND	0.107	5.00
1,2,3,4,7,8-Hexa CDF	ND	0.100	1.00	0.208	0.105	5.00
1,2,3,6,7,8-Hexa CDD	ND	0.107	1.00	ND	0.112	5.00
1,2,3,6,7,8-Hexa CDF	ND	0.105	1.00	ND	0.109	5.00
1,2,3,7,8,9-Hexa CDD	ND	0.106	1.00	0.122	0.109	5.00
1,2,3,7,8,9-Hexa CDF	ND	0.101	1.00	ND	0.104	5.00
1,2,3,7,8-Penta CDD	ND	0.103	1.00	ND	0.106	5.00
1,2,3,7,8-Penta CDF	ND	0.110	1.00	ND	0.110	5.00
2,3,4,6,7,8-Hexa CDF	ND	0.0949	1.00	ND	0.0993	5.00
2,3,4,7,8-Penta CDF	ND	0.108	1.00	ND	0.107	5.00
2,3,7,8-Tetra CDD	0.726	0.108	0.200	ND	0.102	0.999
2,3,7,8-Tetra CDF	6.81 (7.20*)	0.100	0.200	0.128	0.101	0.999
Octa CDD	0.783	0.105	2.00	5.3	0.101	9.99
Octa CDF	ND	0.107	2.00	0.495	0.109	9.99
Total Hepta CDD	0.327	0.101	1.00	1.97	0.100	5.00
Total Hepta CDF	ND	0.104	1.00	0.445	0.102	5.00
Total Hexa CDD	ND	0.106	1.00	0.651	0.109	5.00
Total Hexa CDF	ND	0.100	1.00	0.355	0.104	5.00
Total Penta CDD	ND	0.103	1.00	ND	0.106	5.00
Total Penta CDF	ND	0.109	1.00	0.145	0.108	5.00
Total Tetra CDD	0.726	0.108	0.200	ND	0.151	0.999
Total Tetra CDF	11.7	0.100	0.200	0.128	0.101	0.999
Polychlorinated Biphenyls (ug/kg)						
Aroclor 1016	ND		10.5	ND		9.96
Aroclor 1221	ND		10.5	ND		9.96
Aroclor 1232	ND		10.5	ND		9.96
Aroclor 1242	ND		10.5	ND		9.96
Aroclor 1248	ND		10.5	ND		9.96
Aroclor 1254	ND		10.5	ND		9.96
Aroclor 1260	ND		10.5	ND		9.96
Organochlorine Pesticides (ug/kg)						
Aldrin	ND		4.66	ND		0.996
alpha-BHC	ND		4.66	ND		0.996
beta-BHC	ND		4.66	ND		0.996
delta-BHC	ND		4.66	ND		0.996
gamma-BHC (Lindane)	ND		4.66	ND		0.996
cis-Chlordane	ND		4.66	ND		0.996
				 -		

trans-Chlordane	ND	 4.66	ND	 0.996
4,4'-DDD	ND	 4.66	ND	 0.996
4,4'-DDE	ND	 4.66	ND	 0.996
4,4'-DDT	ND	 4.66	ND	 0.996
Dieldrin	ND	 4.66	ND	 0.996
Endosulfan I	ND	 4.66	ND	 0.996
Endosulfan II	ND	 4.66	ND	 0.996
Endosulfan sulfate	ND	 4.66	ND	 0.996
Endrin	ND	 4.66	ND	 0.996
Endrin Aldehyde	ND	 4.66	ND	 0.996
Endrin ketone	ND	 4.66	ND	 0.996
Heptachlor	ND	 4.66	ND	 0.996
Heptachlor epoxide	ND	 4.66	ND	 0.996
Methoxychlor	ND	 14	ND	 2.99
Chlordane (Technical)	ND	 140	ND	 29.9
Toxaphene (Total)	ND	 140	ND	 29.9
Semivolatile Organic Compounds (ug/kg)				
Acenaphthene	ND	 2.82	ND	 249
Acenaphthylene	ND	 2.82	ND	 249
Anthracene	ND	 2.82	ND	 249
Benz(a)anthracene	ND	 2.82	ND	 249
Benzo(a)pyrene	ND	 4.23	ND	 249
Benzo(b)fluoranthene	ND	 4.23	ND	 249
Benzo(k)fluoranthene	ND	 4.23	ND	 249
Benzo(g,h,i)perylene	ND	 2.82	ND	 249
Chrysene	ND	 2.82	ND	 249
Dibenz(a,h)anthracene	ND	 2.82	ND	 249
Fluoranthene	ND	 2.82	ND	 249
Fluorene	ND	 2.82	ND	 249
Indeno(1,2,3-cd)pyrene	ND	 2.82	ND	 249
1-Methylnaphthalene	ND	 5.64	ND	 249
2-Methylnaphthalene	ND	 5.64	ND	 249
Naphthalene	ND	 5.64	ND	 249
Phenanthrene	ND	 2.82	ND	 249
Pyrene	ND	 2.82	ND	 249
Carbazole	ND	 4.23	ND	 249
Dibenzofuran	ND	 2.82	ND	 249
4-Chloro-3-methylphenol	ND	 28.2	ND	 249
2-Chlorophenol	ND	 14.1	ND	 249
2,4-Dichlorophenol	ND	 14.1	ND	 249
2,4-Dimethylphenol	ND	 14.1	ND	 249
2,4-Dinitrophenol	ND	 70.5	ND	 249
4,6-Dinitro-2-methylphenol	ND	 70.5	ND	 598
2-Methylphenol	ND	 7.05	ND	 249
z-ivietnyiphenoi	טא	 7.05	ND	 24

3+4-Methylphenol(s) ND 7.05 ND 2-Nitrophenol ND 28.2 ND 4-Nitrophenol ND 28.2 ND Pentachlorophenol (PCP) ND 28.2 ND Phenol ND 5.64 ND 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 <t< th=""><th>249 249 249 249 249 249 249 249 249 249</th></t<>	249 249 249 249 249 249 249 249 249 249
4-Nitrophenol ND 28.2 ND Pentachlorophenol (PCP) ND 28.2 ND Phenol ND 5.64 ND 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2	249 249 249 249 249 249 249 249 249 249
Pentachlorophenol (PCP) ND 28.2 ND Phenol ND 5.64 ND 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 28.2 ND Dientylphthalate ND 28.2 ND Di-n-butylphthalate ND <td>249 249 249 249 249 249 249 249 249 249</td>	249 249 249 249 249 249 249 249 249 249
Phenol ND 5.64 ND 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,3,5,6-Tetrachlorophenol ND 14.8 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND	249 249 249 249 249 249 249 249 249 249
2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,3,5,6-Tetrachlorophenol ND 14.8 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Dimethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND	249 249 249 249 249 249 249 249 249 249
2,3,5,6-Tetrachlorophenol ND 14.8 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249 249 249 249 249 249
2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249 249 249 249 249 249
2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249 249 249 249 249 249
Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249 249 249 249 249
Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Dimethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249 249 249 249 249
Diethylphthalate ND 28.2 ND Dimethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249 249 249 249
Dimethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249 249 249
Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249 249
Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitroso-di-n-propylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249 249
N-Nitrosodimethylamine ND 7.05 ND N-Nitroso-di-n-propylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249 249
N-Nitroso-di-n-propylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249 249
N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND	249 249
Bis(2-Chloroethoxy) methane ND 7.05 ND	249
` ''	
Bis(2-Chloroethyl) ether	
IDIS(2 SINOTOCKTIYI) CUTCI	249
Bis(2-Chloroisopropyl) ether ND 7.05 ND	249
Hexachlorobenzene ND 2.82 ND	249
Hexachlorobutadiene ND 7.05 ND	249
Hexachlorocyclopentadiene ND 14.1 ND	249
Hexachloroethane ND 7.05 ND	249
2-Chloronaphthalene ND 2.82 ND	249
1,2-Dichlorobenzene ND 7.05 ND	249
1,3-Dichlorobenzene ND 7.05 ND	249
1,4-Dichlorobenzene ND 7.05 ND	249
1,2,4-Trichlorobenzene ND 7.05 ND	249
4-Bromophenyl phenyl ether ND 7.05 ND	249
4-Chlorophenyl phenyl ether ND 7.05 ND	249
Aniline ND 14.1 ND	249
4-Chloroaniline ND 7.05 ND	249
2-Nitroaniline ND 56.4 ND	249
3-Nitroaniline ND 56.4 ND	249
4-Nitroaniline ND 56.4 ND	249
Nitrobenzene ND 28.2 ND	249
2,4-Dinitrotoluene ND 28.2 ND	249
2,6-Dinitrotoluene ND 28.2 ND	249
Benzoic acid ND 352 ND	1250
Benzyl alcohol ND 14.1 ND	249
Isophorone ND 7.05 ND	249
Azobenzene (1,2-DPH) ND 7.05 ND	249

Bis(2-Ethylhexyl) adipate	ND		70.5		ND		249			
3,3'-Dichlorobenzidine	ND		28.2		ND		249			
1,2-Dinitrobenzene	ND		70.5		ND		249			
1,3-Dinitrobenzene	ND		70.5		ND		249			
1,4-Dinitrobenzene	ND		70.5		ND		249			
Pyridine	ND		14.1		ND		498			
Total Metals (mg/kg)										
Arsenic	1.65		1.10		ND		1.03			
Barium	59.4		1.10							
Cadmium	ND		0.221		ND		0.206			
Chromium	ND		4.42		3.88		1.03			
Copper	24.5		1.10		11.7		1.03			
Lead	2.5		0.221		ND		1.03			
Manganese	210		1.10		145		1.03			
Mercury	ND		0.0884		ND		0.165			
Selenium	ND		2.21							
Silver	ND		0.221							
Zinc	33.3		4.42		17.1		4.11			
Notes:										
	DL	= detec	tion limit							
			ting limit							
		= not de	etected a	t or	above t	he DL				
	*	= confir	mation re	esu	lt					
		= excee	ds Impor	t Cr	iteria					
		Initial s	ource of b	oeri	m mater	ial that i	s not into			
	1 Results from initial source of identified b									
	2	Results	from sec	onc	source	of ident	ified beri			

Import Criteria				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
0.5				
0.5				
5				
5				
10				
10				
10				
10				
10				
10				
10				
5				
5				
5				
5 5				
5				
100				
100				

100				
5				
5				
5 5 5 5				
5 5				
5				
5 5 5				
5				
5				
5 5				
5				
5 5				
250				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
10000				
330				
330				
330				
330				
330				
330				

330				
2000				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
220				
330				
330				
330				
330				
330				
2000				
330				

	8.8				
	0.63				
	76				
	34				
	79				
	1800				
	0.23				
	180				
end	led for import	_			
	aterial				
	naterial				

				•	
	 	-			
—					

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

—				
-				

<u> </u>				

—				
-				

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

			I	

<u> </u>				
<u> </u>				
<u> </u>				

			I	

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

Berm Soil only

			1 1/2" (CRUSHED ROCK	
	LIVINGSTO	ON G-121	ODOT 1½	LIVINGSTON (
Analyte	RESULT	DL	RL	RESULT	DL
Dioxins/Furans (pg/g)					
1,2,3,4,6,7,8-Hepta CDD	0.144	0.111	1.00		
1,2,3,4,6,7,8-Hepta CDF	ND	0.106	1.00		
1,2,3,4,7,8,9-Hepta CDF	ND	0.105	1.00		
1,2,3,4,7,8-Hexa CDD	ND	0.113	1.00		
1,2,3,4,7,8-Hexa CDF	ND	0.0600	1.00		
1,2,3,6,7,8-Hexa CDD	ND	0.118	1.00		
1,2,3,6,7,8-Hexa CDF	ND	0.063	1.00		
1,2,3,7,8,9-Hexa CDD	ND	0.117	1.00		
1,2,3,7,8,9-Hexa CDF	ND	0.060	1.00		
1,2,3,7,8-Penta CDD	ND	0.117	1.00		
1,2,3,7,8-Penta CDF	ND	0.109	1.00		
2,3,4,6,7,8-Hexa CDF	ND	0.057	1.00		
2,3,4,7,8-Penta CDF	ND	0.106	1.00		
2,3,7,8-Tetra CDD	ND	0.109	0.200		
2,3,7,8-Tetra CDF	ND	0.078	0.200		
Octa CDD	0.746	0.171	2.00		
Octa CDF	ND	0.101	2.00		
Total Hepta CDD	0.291	0.111	1.00		
Total Hepta CDF	0.226	0.106	1.00		
Total Hexa CDD	ND	0.117	1.00		
Total Hexa CDF	ND	0.0598	1.00		
Total Penta CDD	ND	0.117	1.00		
Total Penta CDF	ND	0.107	1.00		
Total Tetra CDD	ND	0.109	0.200		
Total Tetra CDF	ND	0.0779	0.200		
Polychlorinated Biphenyls (ug/kg)					
Aroclor 1016	ND		10.3		
Aroclor 1221	ND		10.3		
Aroclor 1232	ND		10.3		
Aroclor 1242	ND		10.3		
Aroclor 1248	ND		10.3		
Aroclor 1254	ND		10.3		
Aroclor 1260	ND		10.3		
Organochlorine Pesticides (ug/kg)					
Aldrin	ND		4.82		
alpha-BHC	ND		4.82		
beta-BHC	ND		4.82		
delta-BHC	ND		4.82		

gamma-BHC (Lindane)	ND	 4.82	
cis-Chlordane	ND	 4.82	
trans-Chlordane	ND	 4.82	
4,4'-DDD	ND	 4.82	
4,4'-DDE	ND	 4.82	
4,4'-DDT	ND	 4.82	
Dieldrin	ND	 4.82	
Endosulfan I	ND	 4.82	
Endosulfan II	ND	 4.82	
Endosulfan sulfate	ND	 4.82	
Endrin	ND	 4.82	
Endrin Aldehyde	ND	 4.82	
Endrin ketone	ND	 4.82	
Heptachlor	ND	 4.82	
Heptachlor epoxide	ND	 4.82	
Methoxychlor	ND	 14.5	
Chlordane (Technical)	ND	 145	
Toxaphene (Total)	ND	 145	
Semivolatile Organic Compounds (ug/kg)			
Acenaphthene	ND	 2.79	
Acenaphthylene	ND	 2.79	
Anthracene	ND	 2.79	
Benz(a)anthracene	ND	 2.79	
Benzo(a)pyrene	ND	 4.18	
Benzo(b)fluoranthene	ND	 4.18	
Benzo(k)fluoranthene	ND	 4.18	
Benzo(g,h,i)perylene	ND	 2.79	
Chrysene	ND	 2.79	
Dibenz(a,h)anthracene	ND	 2.79	
Fluoranthene	ND	 2.79	
Fluorene	ND	 2.79	
Indeno(1,2,3-cd)pyrene	ND	 2.79	
1-Methylnaphthalene	ND	 5.57	
2-Methylnaphthalene	ND	 5.57	
Naphthalene	ND	 5.57	
Phenanthrene	ND	 2.79	
Pyrene	ND	 2.79	
Carbazole	ND	 4.18	
Dibenzofuran	ND	 2.79	
4-Chloro-3-methylphenol	ND	 27.9	
2-Chlorophenol	ND	 13.9	
2,4-Dichlorophenol	ND	 13.9	
2,4-Dimethylphenol	ND	 13.9	
2,4-Dinitrophenol	ND	 69.7	

1			 ,
4,6-Dinitro-2-methylphenol	ND	 69.7	
2-Methylphenol	ND	 6.97	
3+4-Methylphenol(s)	ND	 6.97	
2-Nitrophenol	ND	 27.9	
4-Nitrophenol	ND	 27.9	
Pentachlorophenol (PCP)	ND	 5.57	
Phenol	ND	 5.57	
2,3,4,6-Tetrachlorophenol	ND	13.9	
2,3,5,6-Tetrachlorophenol	ND	 14.6	
2,4,5-Trichlorophenol	ND	13.9	
2,4,6-Trichlorophenol	ND	 13.9	
Bis(2-ethylhexyl)phthalate	ND	 41.8	
Butyl benzyl phthalate	ND	 27.9	
Diethylphthalate	ND	 27.9	
Dimethylphthalate	ND	 27.9	
Di-n-butylphthalate	ND	 27.9	
Di-n-octyl phthalate	ND	 27.9	
N-Nitrosodimethylamine	ND	 6.97	
N-Nitroso-di-n-propylamine	ND	 6.97	
N-Nitrosodiphenylamine	ND	 6.97	
Bis(2-Chloroethoxy) methane	ND	 6.97	
Bis(2-Chloroethyl) ether	ND	 6.97	
Bis(2-Chloroisopropyl) ether	ND	 6.97	
Hexachlorobenzene	ND	 2.79	
Hexachlorobutadiene	ND	 6.97	
Hexachlorocyclopentadiene	ND	 13.9	
Hexachloroethane	ND	 6.97	
2-Chloronaphthalene	ND	 2.79	
1,2-Dichlorobenzene	ND	 6.97	
1,3-Dichlorobenzene	ND	 6.97	
1,4-Dichlorobenzene	ND	 6.97	
1,2,4-Trichlorobenzene	ND	 6.97	
4-Bromophenyl phenyl ether	ND	 6.97	
4-Chlorophenyl phenyl ether	ND	 6.97	
Aniline	ND	 13.9	
4-Chloroaniline	ND	 6.97	
2-Nitroaniline	ND	 55.7	
3-Nitroaniline	ND	 55.7	
4-Nitroaniline	ND	 55.7	
Nitrobenzene	ND	 27.9	
2,4-Dinitrotoluene	ND	 27.9	
2,6-Dinitrotoluene	ND	 27.9	
Benzoic acid	ND	 348	
Benzyl alcohol	ND	 13.9	
'			

ND		6.97			
ND		6.97			
ND		69.7			
ND		27.9			
ND		69.7			
ND		69.7			
ND		69.7			
ND		13.9			
1.02		1.02			
41.8		1.02			
0.234		0.203			
ND		4.06			
98.2		1.02		100/115/90.4	
2.42		0.203			
204		1.02			
ND		0.0813			
ND		2.03			
ND		0.203			
30.0		1.60			
DL = detection limit					
RL	= report	ing limit			
ND	= not de	tected at o	r ak	ove the DL	
	ND 1.02 41.8 0.234 ND 98.2 2.42 204 ND	ND ND ND ND ND ND ND ND 1.02 41.8 0.234 ND 98.2 2.42 ND	ND 6.97 ND 69.7 ND 69.7 ND 69.7 ND 69.7 ND 13.9 1.02 1.02 41.8 1.02 0.234 0.203 ND 4.06 98.2 1.02 2.42 0.203 204 1.02 ND 0.0813 ND 0.203 30.0 1.60 DL = detection limit RL = reporting limit	ND 6.97 ND 69.7 ND 69.7 ND 69.7 ND 69.7 ND 13.9 1.02 1.02 41.8 1.02 0.234 0.203 ND 4.06 98.2 1.02 2.42 0.203 204 1.02 ND 0.0813 ND 2.03 ND 0.203 30.0 1.60	ND 6.97 ND 69.7 ND 69.7 ND 69.7 ND 69.7 ND 69.7 ND 13.9 1.02 41.8 1.02 ND 4.06 98.2 1.02 100/115/90.4 2.42 0.203 ND 0.0813 ND 0.203 ND 0.203 ND 0.203 ND 0.203 ND 1.60 DL = detection limit

OT 1½" E					
	Import Criteria				
Comp RL	import criteria				
NL NL					
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	0.5				
	0.5				
	5				
	5				
	10				
	10				
	10				
	10				
	10				
	10				
	10	-			
	10				
	5				
	5	-			
	5				
	5	-			
] 5				

 5					
 100					
 100					
 5					
 250					
 330					
 330					
 10000					
 330					
 330					
 330					
 330					
 330					
 •	i .	i	1	1	

1		1	
 330			
 330			
 2000			
 330			
 330			
 330			
 330			
 330			
 330			
 330			
 330			
 2000			
330			
 330			

	8.8			
	0.63			
	76			
1.02	34			
	79			
	1800			
	0.23			
	180			

			Ī	T	
<u> </u>					
	 -				·

				•	
	 	-			
—					

				•	
	 	-			
—					

[
<u> </u>					
[
<u> </u>					
[
<u> </u>					
[
<u> </u>					
l	 		 		
<u> </u>					
	l .			l .	

				•	
	 	-			
—					

[
<u> </u>					
[
<u> </u>					
[
<u> </u>					
[
<u> </u>					
l	 		 		
<u> </u>					
	l .			l .	

				•	
	 	-			
—					

				•	
	 	-			
—					

	Ī		Ī	T	
<u></u>			 		

				•	
	 	-			
—					

 	<u> </u>	 	 	
	1			

		T	Т	T		T	T	
	-				-			
<u> </u>								
-		1				1	1	

				•	
	 	-			
—					

				•	
	 	-			
—					

				•	
	 	-			
—					

1.5 in Crushed only

1.5 in Crushed only

<u> </u>				

<u> </u>		
<u> </u>		

			1
 			
 			
l		l	l .

		1 1/2" CRUSHED ROCK										
	LIVINGSTO	DN C 424	ODOT 41/	LIVINGSTON G-121 OF Comp/C Comp/W								
	LIVINGSTO		ODO1 1½									
		Grab			mposite							
Analyte	RESULT	DL	RL	RESULT	DL							
Dioxins/Furans (pg/g)												
1,2,3,4,6,7,8-Hepta CDD	0.144	0.111	1.00									
1,2,3,4,6,7,8-Hepta CDF	ND	0.106	1.00									
1,2,3,4,7,8,9-Hepta CDF	ND	0.105	1.00									
1,2,3,4,7,8-Hexa CDD	ND	0.113	1.00									
1,2,3,4,7,8-Hexa CDF	ND	0.0600	1.00									
1,2,3,6,7,8-Hexa CDD	ND	0.118	1.00									
1,2,3,6,7,8-Hexa CDF	ND	0.063	1.00									
1,2,3,7,8,9-Hexa CDD	ND	0.117	1.00									
1,2,3,7,8,9-Hexa CDF	ND	0.060	1.00									
1,2,3,7,8-Penta CDD	ND	0.117	1.00									
1,2,3,7,8-Penta CDF	ND	0.109	1.00									
2,3,4,6,7,8-Hexa CDF	ND	0.057	1.00									
2,3,4,7,8-Penta CDF	ND	0.106	1.00									
2,3,7,8-Tetra CDD	ND	0.109	0.200									
2,3,7,8-Tetra CDF	ND	0.078	0.200									
Octa CDD	0.746	0.171	2.00									
Octa CDF	ND	0.101	2.00									
Total Hepta CDD	0.291	0.111	1.00									
Total Hepta CDF	0.226	0.106	1.00									
Total Hexa CDD	ND	0.117	1.00									
Total Hexa CDF	ND	0.0598	1.00									
Total Penta CDD	ND	0.117	1.00									
Total Penta CDF	ND	0.107	1.00									
Total Tetra CDD	ND	0.109	0.200									
Total Tetra CDF	ND	0.0779	0.200									
TOTAL TOXICITY EQUIVALENCY4												
Mammalian TEF	0.33											
Fish TEF	0.55											
Bird TEF												
Polychlorinated Biphenyls (ug/kg)												
Aroclor 1016	ND		10.3									
Aroclor 1221	ND		10.3									
Aroclor 1232	ND		10.3									
Aroclor 1242	ND		10.3									
Aroclor 1248	ND		10.3									
Aroclor 1254	ND		10.3									
Aroclor 1260	ND		10.3									
/ 11 OCIOT 12 OC	ND		10.5		<u> </u>							

Organochlorine Pesticides (ug/kg)			
Aldrin	ND	 4.82	
alpha-BHC	ND	 4.82	
beta-BHC	ND	 4.82	
delta-BHC	ND	 4.82	
gamma-BHC (Lindane)	ND	 4.82	
cis-Chlordane	ND	 4.82	
trans-Chlordane	ND	 4.82	
4,4'-DDD	ND	 4.82	
4,4'-DDE	ND	 4.82	
4,4'-DDT	ND	 4.82	
Dieldrin	ND	 4.82	
Endosulfan I	ND	 4.82	
Endosulfan II	ND	 4.82	
Endosulfan sulfate	ND	 4.82	
Endrin	ND	 4.82	
Endrin Aldehyde	ND	 4.82	
Endrin ketone	ND	 4.82	
Heptachlor	ND	 4.82	
Heptachlor epoxide	ND	 4.82	
Methoxychlor	ND	 14.5	
Chlordane (Technical)	ND	 145	
Toxaphene (Total)	ND	 145	
Semivolatile Organic Compounds (ug/kg)			
Acenaphthene	ND	 2.79	
Acenaphthylene	ND	 2.79	
Anthracene	ND	 2.79	
Benz(a)anthracene	ND	 2.79	
Benzo(a)pyrene	ND	 4.18	
Benzo(b)fluoranthene	ND	 4.18	
Benzo(k)fluoranthene	ND	 4.18	
Benzo(g,h,i)perylene	ND	 2.79	
Chrysene	ND	 2.79	
Dibenz(a,h)anthracene	ND	 2.79	
Fluoranthene	ND	 2.79	
Fluorene	ND	 2.79	
Indeno(1,2,3-cd)pyrene	ND	 2.79	
1-Methylnaphthalene	ND	 5.57	
2-Methylnaphthalene	ND	 5.57	
Naphthalene	ND	 5.57	
Phenanthrene	ND	 2.79	
Pyrene	ND	 2.79	
Carbazole	ND	 4.18	
Dibenzofuran	ND	 2.79	

4-Chloro-3-methylphenol ND 2-Chlorophenol ND	27.9 13.9	 ļ
12 emorophenor		l '
2,4-Dichlorophenol ND	13.9	
2,4-Dimethylphenol ND	13.9	
2,4-Dinitrophenol ND	69.7	
4,6-Dinitro-2-methylphenol ND	69.7	
2-Methylphenol ND	6.97	
3+4-Methylphenol(s) ND	6.97	
2-Nitrophenol ND	27.9	
4-Nitrophenol ND	27.9	
Pentachlorophenol (PCP) ND	5.57	
Phenol ND	5.57	
2,3,4,6-Tetrachlorophenol ND	13.9	
2,3,5,6-Tetrachlorophenol ND	14.6	
2,4,5-Trichlorophenol ND	13.9	
2,4,6-Trichlorophenol ND	13.9	
Bis(2-ethylhexyl)phthalate ND	41.8	
Butyl benzyl phthalate ND	27.9	
Diethylphthalate ND	27.9	
Dimethylphthalate ND	27.9	
Di-n-butylphthalate ND	27.9	
Di-n-octyl phthalate ND	27.9	
N-Nitrosodimethylamine ND	6.97	
N-Nitroso-di-n-propylamine ND	6.97	
N-Nitrosodiphenylamine ND	6.97	
Bis(2-Chloroethoxy) methane ND	6.97	
Bis(2-Chloroethyl) ether ND	6.97	
Bis(2-Chloroisopropyl) ether ND	6.97	
Hexachlorobenzene ND	2.79	
Hexachlorobutadiene ND	6.97	
Hexachlorocyclopentadiene ND	13.9	
Hexachloroethane ND	6.97	
2-Chloronaphthalene ND	2.79	
1,2-Dichlorobenzene ND	6.97	
1,3-Dichlorobenzene ND	6.97	
1,4-Dichlorobenzene ND	6.97	
1,2,4-Trichlorobenzene ND	6.97	
4-Bromophenyl phenyl ether ND	6.97	
4-Chlorophenyl phenyl ether ND	6.97	
Aniline ND	13.9	
4-Chloroaniline ND	6.97	
2-Nitroaniline ND	55.7	
3-Nitroaniline ND	55.7	
4-Nitroaniline ND	55.7	

Nitrobenzene	ND		27.9					
2,4-Dinitrotoluene	ND		27.9					
,								
2,6-Dinitrotoluene Benzoic acid	ND ND		27.9 348					
	ND ND		13.9					
Benzyl alcohol								
Isophorone	ND		6.97					
Azobenzene (1,2-DPH)	ND		6.97					
Bis(2-Ethylhexyl) adipate	ND		69.7					
3,3'-Dichlorobenzidine	ND		27.9					
1,2-Dinitrobenzene	ND		69.7					
1,3-Dinitrobenzene	ND		69.7					
1,4-Dinitrobenzene	ND		69.7					
Pyridine	ND		13.9					
Total Metals (mg/kg)								
Arsenic	1.02		1.02					
Barium	41.8		1.02					
Cadmium	0.234		0.203					
Chromium	ND		4.06					
Copper	98.2		1.02	100/115/90.4				
Lead	2.42		0.203					
Manganese	204		1.02					
Mercury	ND		0.0813					
Selenium	ND		2.03					
Silver	ND		0.203					
Zinc	30.0		1.60					
Notes:								
	DL	= detect	ion limit					
	RL	= report	ing limit					
	ND	= not de	tected at o	r above the DL				
	*	= confiri	mation resu	ılt				
		= excee	ds Import C	riteria				
		oneseds impere sinceria						
		= original sample result reported by laborat						
	**	these additional analyses have not yet bee						
		Initial source of berm material that is not in						
	1							
	າ	Results from initial source of identified berr						
				d source of identif				
	3	All beac	h backfill re	sults are from the	same so			
	4	Toxicity	equivalent	calculated using D	Ls for un			

				·						
OOT 1½" E Comp	LIVINGSTON G-1		I BAC¹	(vl Creek I 7/23/15)	DAYBREAK G-109 BEACH BACK			
	Gra	ab			omposit	е		Grab		
RL	RESULT	DL	RL	RESULT DL		RL	RESULT	DL	RL	
	0.192	0.101	1.00	0.852	0.101	5.00	0.300	0.0950	1.00	
	ND	0.104	1.00	0.445	0.102	5.00	ND	0.0760	1.00	
	ND	0.103	1.00	ND	0.102	5.00	ND	0.0757	1.00	
	ND	0.102	1.00	ND	0.107	5.00	ND	0.108	1.00	
	ND	0.100	1.00	0.208	0.105	5.00	ND	0.0891	1.00	
	ND	0.107	1.00	ND	0.112	5.00	ND	0.113	1.00	
	ND	0.105	1.00	ND	0.109	5.00	ND	0.0929	1.00	
	ND	0.106	1.00	0.122	0.109	5.00	ND	0.113	1.00	
	ND	0.101	1.00	ND	0.104	5.00	ND	0.0898	1.00	
	ND	0.103	1.00	ND	0.106	5.00	ND	0.0948	1.00	
	ND	0.110	1.00	ND	0.110	5.00	ND	0.0948	1.00	
	ND	0.0949	1.00	ND	0.0993	5.00	ND	0.0842	1.00	
	ND	0.108	1.00	ND	0.107	5.00	ND	0.0923	1.00	
	0.726	0.108	0.200	ND	0.102	0.999	ND	0.109	0.200	
	6.81 (7.20*)	0.100	0.200	0.128	0.101	0.999	ND	0.101	0.200	
	0.783	0.105	2.00	5.3	0.101	9.99	1.45	0.199	2.00	
	ND	0.107	2.00	0.495	0.109	9.99	ND	0.200	2.00	
	0.327	0.101	1.00	1.97	0.100	5.00	0.564	0.0950	1.00	
	ND	0.104	1.00	0.445	0.102	5.00	0.0901	0.0758	1.00	
	ND	0.106	1.00	0.651	0.109	5.00	0.128	0.112	1.00	
	ND	0.100	1.00	0.355	0.104	5.00	ND	0.0889	1.00	
	ND	0.103	1.00	ND	0.106	5.00	ND	0.0948	1.00	
	ND	0.109	1.00	0.145	0.108	5.00	ND	0.0936	1.00	
	0.726	0.108	0.200	ND	0.151	0.999	ND	0.109	0.200	
	11.7	0.100	0.200	0.128	0.101	0.999	ND	0.101	0.200	
	0.95			0.36			0.32			
	0.55			0.39			0.52			
				0.54						
				0.54						
	ND		10.5	ND		9.96	ND		10.2	
	ND		10.5	ND		9.96	ND		10.2	
	ND		10.5	ND		9.96	ND		10.2	
	ND ND		10.5	ND		9.96	ND		10.2	
	ND ND		10.5	ND		9.96	ND		10.2	
	ND ND		10.5				ND		10.2	
	ND ND		10.5	ND ND		9.96 9.96	ND ND		10.2	

	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
 _	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
 7	ND	 4.66	ND	 0.996	ND	 4.42
 7	ND	 4.66	ND	 0.996	ND	 4.42
 \dashv	ND	 4.66	ND	 0.996	ND	 4.42
 _	ND	 4.66	ND	 0.996	ND	 4.42
 \dashv	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 4.66	ND	 0.996	ND	 4.42
	ND	 14	ND	 2.99	ND	 13.3
	ND	 140	ND	 29.9	ND	 133
	ND	 140	ND	 29.9	ND	 133
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 4.23	ND	 249	ND	 4.1
	ND	 4.23	ND	 249	ND	 4.1
	ND	 4.23	ND	 249	ND	 4.1
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 5.64	ND	 249	ND	 5.46
	ND	 5.64	ND	 249	ND	 5.46
	ND	 5.64	ND	 249	ND	 5.46
	ND	 2.82	ND	 249	ND	 2.74
	ND	 2.82	ND	 249	ND	 2.74
	ND	 4.23	ND	 249	ND	 4.10
	ND	 2.82	ND	 249	ND	 2.74

	ND	 28.2	ND	 249	ND	 27.4
				_		
	ND	 14.1	ND	 249	ND	 13.6
	ND	 14.1	ND	 249	ND	 13.6
	ND	 14.1	ND	 249	ND	 13.6
	ND	 70.5	ND	 249	ND	 68.3
	ND	 70.5	ND	 598	ND	 68.3
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 28.2	ND	 249	ND	 27.4
	ND	 28.2	ND	 249	ND	 27.4
	ND	 28.2	ND	 249	ND	 27.4
	ND	 5.64	ND	 249	ND	 5.46
	ND	 14.1	ND	 249	ND	 13.6
	ND	 14.8	ND	 249	ND	 14.3
	ND	 14.1	ND	 249	ND	 13.6
	ND	 14.1	ND	 249	ND	 13.6
	ND	 42.3	ND	 249	ND	 41
	ND	 28.2	ND	 249	ND	 27.4
	ND	 28.2	ND	 249	ND	 27.4
	ND	 28.2	ND	 249	ND	 27.4
	ND	 28.2	ND	 249	ND	 27.4
	ND	 28.2	ND	 249	ND	 27.4
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 2.82	ND	 249	ND	 2.74
	ND	 7.05	ND	 249	ND	 6.83
	ND	 14.1	ND	 249	ND	 13.6
	ND	 7.05	ND	 249	ND	 6.83
	ND	 2.82	ND	 249	ND	 2.74
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 14.1	ND	 249	ND	 13.6
	ND	 7.05	ND	 249	ND	 6.83
	ND	 56.4	ND	 249	ND	 54.6
	ND	 56.4	ND	 249	ND	 54.6
	ND	 56.4	ND	 249	ND	 54.6
	110	30.7	ייי	<u>-</u> J	ייי	J 7.0

							1				1		
		ND		28.2		ND		249		ND		27.4	
		ND		28.2		ND		249		ND		27.4	
		ND		28.2		ND		249		ND		27.4	
		ND		352		ND		1250		ND		341	
		ND		14.1		ND		249		ND		13.6	
		ND		7.05		ND		249		ND		6.83	
		ND		7.05		ND		249		ND		6.83	
		ND		70.5		ND		249		ND		68.3	
		ND		28.2		ND		249		ND		27.4	
		ND		70.5		ND		249		ND		68.3	
		ND		70.5		ND		249		ND		68.3	
		ND		70.5		ND		249		ND		68.3	
		ND		14.1		ND		498		ND		13.6	
		1.65		1.10		ND		1.03		59.0**		1.02	
		59.4		1.10						74.4		1.02	
		ND		0.221		ND		0.206		ND		0.205	
		ND		4.42		3.88		1.03		9.69		4.09	
1.02		24.5		1.10		11.7		1.03					
		2.5		0.221		ND		1.03		3.47		0.205	
		210		1.10		145		1.03					
		ND		0.0884		ND		0.165		ND		0.0818	
		ND		2.21						ND		2.05	
		ND		0.221						ND		0.205	
		33.3		4.42		17.1		4.11					
													_
													<u> </u>
													<u> </u>
	g/k	g. The result from	reanalysi	s of a sec	one	d aliquot	from th	e same s	amp	ole was 4	1.45 mg/	kg. Thre	e 5
ceived.													
ided for im	po	rt											
naterial													
material													
ırce.													
detected co	ong	geners.											l

			-			BFAC	H B	ACKFILL	3						
BEA	REAK (ACH BA eanalys Grab	NCK			3-S Con	np		BE	B-C Con	_			B-N Cor		
RESULT	DL	RL		RESULT	DL	RL		RESULT	DL	RL		RESULT	DL	RL	
KLJULI	DL	IVE		KLJULI	DL	IXL		KLSOLI	DL	IVL		KLJULI	DL	IVE	
							_								
											_				

	 		 		-		 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 4.18		 				 	
ND	 4.18		 				 	
ND	 4.18		 				 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 5.57		 				 	
ND	 5.57		 				 	
ND	 5.57		 				 	
ND	 2.79		 				 	
ND	 2.79		 				 	
ND	 4.18		 				 	
ND	 2.79							
עא	 2.79		 				 	

ND	 27.9	 		 		 	
ND	 13.9	 		 		 	
ND	 13.9	 		 		 	
ND	 13.9	 		 		 	
ND	 69.7	 		 		 	
ND	 69.7	 		 		 	
ND	 69.7	 		 		 	
ND	 69.7	 		 		 	
ND	 27.9	 		 		 	
ND	 27.9	 		 		 	
ND	 27.9	 		 		 	
ND	 5.57	 		 		 	
ND	 13.9	 		 		 	
ND	 14.6	 		 		 	 \vdash
ND	 13.6	 		 		 	 \vdash
ND	 13.6	 		 		 	 \vdash
ND	 41.8	 		 		 	
ND	 27.9	 		 		 	
ND	 27.9	 		 		 	
ND	 27.9	 		 		 	
ND	 27.9	 		 		 	
ND	 27.9	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 2.79	 		 		 	
ND	 6.97	 		 		 	
ND	 13.9	 		 		 	
ND	 6.97	 		 		 	
ND	 2.79	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	
ND	 13.9	 		 		 	
ND	 6.97	 		 		 	
ND	 54.6	 		 		 	
ND	 55.7	 		 		 	
ND	 55.7	 		 		 	

														_	
ND		27.9													
ND		27.9													
ND	-	27.9													
ND	-	348							-						
ND		13.9													
ND		6.97													
ND		6.97													
ND		6.97													
ND		27.9													
ND		69.7													
ND		69.7													
ND		69.7													
ND		13.9													
4.45**		1.02		4.29		1.02		4.43		1.04		4.46		1.10	
38.2		1.02													
ND		0.205													
9.51		4.09													
3.28		0.205													
ND		0.0818													
ND		2.05													
ND		0.205													
								·						·	
point co	mposit	e sample	s w	ere ther	collec	ted from	the	e materia	ıl, and t	he resul	ting	arsenic	concen	trations	wei

	D Tatal Ca		Import Critoria
	B-Total Co Composit	_	Import Criteria
RESULT	DL	RL	
RESULT	DL	NL	
0.299	0.108	4.96	2.5
	0.108		2.5
0.11		4.96	
ND	0.0968	4.96	2.5
ND	0.102	4.96	2.5
ND	0.0999	4.96	2.5
ND	0.107	4.96	2.5
ND	0.103	4.96	2.5
ND	0.104	4.96	2.5
ND	0.0993	4.96	2.5
ND	0.101	4.96	2.5
ND	0.105	4.96	2.5
ND	0.0945	4.96	2.5
ND	0.103	4.96	2.5
ND	0.103	0.993	0.5
ND	0.107	0.993	0.5
1.81	0.107	9.93	5
0.166	0.108	9.93	5
0.523	0.108	4.96	
0.11	0.0965	4.96	
ND	0.162	4.96	
ND	0.102	4.96	
ND	0.101	4.96	
ND	0.104	4.96	
ND	0.144	0.993	
ND	0.107	0.993	
0.33			
ND		9.19	10
ND		9.19	10
ND		9.19	10
ND		9.19	10

ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	100			
ND	 1.8	100			
ND	 1.8	5			
ND	 1.8	5			
_	1.8	5			
ND					
ND	 1.8	<u> </u>			
ND	 1.8				
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 5.41	5			
ND	 54.1				
ND	 54.1	250			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 3.97	330			
ND	 3.97				
ND	 3.97				
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 5.29	10000			
ND	 5.29				
ND	 5.29	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 3.97				
ND	 2.65	330			

ND	 26.5				
					
ND	 13.2				
ND	 13.2				
ND	 13.2	330			
ND	 66.2				
ND	 66.2				
ND	 6.62	330			
ND	 6.62	330			
ND	 26.5				
ND	 26.5	2000			
ND	 26.5				
ND	 5.29	330			
ND	 13.2				
ND	 13.2				
ND	 13.2				
ND	 13.2				
ND	 39.7	330			
ND	 26.5	330			
ND	 26.5	330			
ND	 26.5	330			
ND	 26.5	330			
ND	 26.5	330			
ND	 6.62				
ND	 6.62				
ND	 6.62	330			
ND	 6.62				
ND	 6.62				
ND	 6.62				
ND	 2.65	330			
ND	 6.62	330			
ND	 13.2				
ND	 6.62	330			
ND	 2.65				
ND	 6.62	330			
ND	 6.62	330			
ND	 6.62	330			
ND	 6.62	330			
ND	 6.62				
ND	 6.62				
ND	 13.2				
ND	 6.62				
ND	 52.9				
ND	 52.9				
ND	 52.9				
שויו	 32.3	- -			

		Т		1	ı	T	
ND		26.5					
ND		26.5					
ND		26.5					
ND		330	2000				
ND		13.2	330				
ND		6.62					
ND		6.62					
ND		66.2					
ND		26.5					
ND		66.2					
ND		66.2					
ND		66.2					
ND		13.2					
3.91		1.10	8.8				
ND		0.22	0.63				
8.59		1.1	76				
25.2		2.20	34				
3.36		0.22	79				
323		1.10	1800				
ND		0.0881	0.23				
28.9		4.40	180				
4 30 4	. احت ۱۸۵	1 10 11 .					
e 4.29, 4	1.43, and 4	+.46 mg/Kg	. Laboratory reports from				
-							
-							

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

 	_	_	_	_	_	_	

	•		•	

	_			

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	•		•	

	_			

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	•		•	

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

 	_	_	_	_	_	_	

	•		•	

		•		•	
			<u> </u>		
1					

		•		•	
			<u> </u>		
1					

<u> </u>		<u> </u>		

		•		•	
			<u> </u>		
1					

		•		•	
			<u> </u>		
1					